Adenosine receptor A3 is a critical mediator in LPS-induced pulmonary inflammation.
نویسندگان
چکیده
Adenosine receptor A(3) (A(3)) regulates directed movement of polymorphonuclear cells (PMNs) to sites of inflammation and has been implicated as a relevant mediator in models of inflammatory diseases. Here, we sought to characterize the role of A(3) in a murine model of lung inflammation. Initial studies revealed that pulmonary A(3) transcript levels were elevated following LPS exposure in vivo. In addition, inhalation of LPS increased the accumulation of PMNs in wild-type and A(3)(-/-) mice in all lung compartments. Pretreatment with the specific A(3)-agonist Cl-IB-MECA significantly decreased migration of PMNs into lung interstitium and alveolar air space of wild-type mice but not of A(3)(-/-) mice. Lower PMN counts were associated with reduced levels of TNF-α and IL-6 in the alveolar space of wild-type mice that received Cl-IB-MECA. In addition, Cl-IB-MECA attenuated LPS-induced microvascular permeability in wild-type mice as assessed by the extravasation of Evans blue. In pulmonary microvascular endothelial cells, Cl-IB-MECA reduced LPS-induced cytoskeletal remodeling and cell retraction, consistent with a specific role of A(3) for maintaining endothelial integrity. Migratory activity of human PMNs across an endothelial or epithelial monolayer was reduced when A(3) was activated on PMNs. Studies in chimeric mice, however, revealed that Cl-IB-MECA required A(3) on both hematopoietic and nonhematopoietic cells to reduce transmigration in vivo. Together, our results shed new light on the role of A(3) in LPS-induced PMN trafficking in the lung and suggest pharmacological modulation of A(3)-dependent pathways as a promising approach in lung inflammation.
منابع مشابه
Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury.
Sepsis and septic acute lung injury are among the leading causes for morbidity and mortality of critical illness. Extracellular adenosine is a signaling molecule implicated in the cellular adaptation to hypoxia, ischemia, or inflammation. Therefore, we pursued the role of the A2B adenosine receptor (AR) as potential therapeutic target in endotoxin-induced acute lung injury. We gained initial in...
متن کاملProtective effect of adenosine receptors against lipopolysaccharide-induced acute lung injury.
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) affect 200,000 people a year in the USA. Pulmonary vascular and specifically endothelial cell (EC) barrier compromise is a hallmark of these diseases. We have recently shown that extracellular adenosine enhances human pulmonary (EC) barrier via activation of adenosine receptors (ARs) in cell cultures. On the basis of these dat...
متن کاملThe role of adenosine A3 receptors in cytotoxicity of the breast cancer cell lines
The nucleoside adenosine is present within cells and body fluids of all living organisms and its production, both intra- and extracellularly, is tightly coupled to energy consumption resulting in increased level of extracellular adenosine. The physiological effects of adenosine are mediated through four pharmacologically and biochemically distinct adenosine receptors (AR), i.e. A1, A2A, A2B and...
متن کاملSuppression of inflammation by low-dose methotrexate is mediated by adenosine A2A receptor but not A3 receptor activation in thioglycollate-induced peritonitis
Prior studies demonstrate that adenosine, acting at one or more of its receptors, mediates the anti-inflammatory effects of methotrexate in animal models of both acute and chronic inflammation. Both adenosine A2A and A3 receptors contribute to the anti-inflammatory effects of methotrexate treatment in the air pouch model of inflammation, and the regulation of inflammation by these two receptors...
متن کاملNetrin-1 dampens pulmonary inflammation during acute lung injury.
RATIONALE Acute lung injury (ALI) is an inflammatory disorder characterized by hypoxemia and diffuse infiltration of neutrophils into the alveolar space. The migration and extravasation of neutrophils is guided through positive guidance cues, such as chemokines. Recent work has identified the neuronal guidance protein netrin-1 to be a negative guidance cue for leukocyte migration and to hold an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 299 4 شماره
صفحات -
تاریخ انتشار 2010